
.

Note that Information contained in this document is for educational purposes.

CoolPlayer Buffer Overflow

Selina Fahy

CMP320: Ethical Hacking 3

BSc Ethical Hacking Year 3

2020/21

.

Abstract

This report aims to test, exploit and explain the vulnerability and risks that can be found

the vulnerable music player ‘CoolPlayer’. The main focus of the exploitation is buffer

overflow, a common vulnerability that is exploited often in the modern world. Buffer

overflows occur when more data is entered into a program than memory allocated to

the input.

By using various tools and debuggers, while also following a methodology, the tester

was able to test and assess the risks that the vulnerability had, especially to the users.

In this report the tester was able to exploit the skins section of the application with both

common code and malicious code, demonstrating ‘normal’ execution and execution to

get around some attempted countermeasures for the vulnerability.

It was concluded, after the testing, that there were various methods that worked in

exploiting the buffer overflow vulnerability in which can lead to potential harm to the

user’s device.

.

Contents

1 Introduction .. 1

1.1 Background ... 1

1.2 What is CoolPlayer? ... 1

1.3 Aim ... 2

1.4 Methodology .. 2

2 Procedure ... 3

2.1 Overview of Procedure .. 3

2.2 Procedure ... 3

2.2.1 DEP disabled.. 3

2.2.2 DEP enabled .. 20

3 Results ... 30

3.1 Results .. 30

3.1.1 DEP disabled.. 30

3.1.2 DEP enabled .. 30

4 Discussion ... 31

4.1 General Discussion ... 31

4.2 Countermeasures ... 31

4.3 Conclusions... 32

4.4 Future Work ... 32

References ... 33

Appendices .. 34

Appendix A – Installing mona.py ... 48

Appendix B – Python to Perl Search and Replace ... 51

Appendix C – Breakpoint for DEP System Instruction... 55

1 | P a g e

1 INTRODUCTION

1.1 BACKGROUND

An exploit is a piece of software, that takes advantage of a bug or vulnerability in order

to cause unintended behavior to occur on computer software, hardware, or something

electronic (Exploit (computer security) - Wikipedia, 2021).

Buffer overflow is a common type of vulnerability that is constantly being exploited as

exploiting memory corruption can allow malicious users to be able to execute many

different types of code that could give them access to the machine.

A buffer is a section of memory that is used to store data for a small amount of time.

The simplest explanation for a buffer overflow is the writing of data past the allocated

memory space reserved for the specific program in which can cause undefined behavior

(What is buffer overflow?, 2021).

An example of this is to consider a small program where a user has to enter a maximum

of 12 letters, in other words there is only 12 characters in the buffer. However, instead

of typing in 12 letters a user types in 15, this would lead to the extra characters being

written outside the allocated block of memory in the buffer and overflowing into the

stack (a section of memory that is right next to the buffer). This in turn can lead to the

corruption of memory and crashing the program.

Malicious users may exploit this and attempt to write specific code that overflows the

buffer and write malicious instructions that can be executed in the stack. One example

of code that a malicious user may use would be to open an unauthorised connection

back to their computer from the victim’s.

There are many types of overflow attacks such as stack overflow and heap overflow.

1.2 WHAT IS COOLPLAYER?

CoolPlayer is an old portable music player for Windows that allowed for users to be able

to make their player unique by customising their own skins. It had been reported that

CoolPlayer is vulnerable to buffer overflows which can be exploited through the use of

these skins, by creating long skins that overflow the character limit. Exploiting this

vulnerability allowed an attacker to be able to execute arbitrary code on the host

system. This is a CVE that was reported many years ago (CVE-2008-5735), though there

is more than just the one CVE for this program (Coolplayer Coolplayer: List of security

2 | P a g e

vulnerabilities, 2007). The tester downloads the corresponding .EXE file and

MSVCRTD.DLL file in order to get started on testing this vulnerability.

1.3 AIM

The aim of this report is to test and exploit the music player ‘CoolPlayer’, both
with Data Execution Prevention enabled and disabled. Using the programming
language Perl, the tester went to test the software with the intentions to
demonstrate the risks that are present with such a vulnerability.
Through the use of a methodology, the tester was able to conduct a structured
series of exploitation attempts in hopes to identify all the risks.
In order to achieve this the following objectives should be met:

• Testing the music player for response to overflowing the buffer.

• Proof of concept that the vulnerability exists using a normal program.

• Proof of concept using potentially malicious code.

• Using the above concept with Data Execution Prevention enabled

1.4 METHODOLOGY

The tester will be following the steps laid out below:

• Testing for vulnerability – using basic methods to overflow the buffer and write to
the stack.

• Locating the instruction point (EIP) – through the use of patterns in the
overflowing characters to calculate the EIP.

• Get distance to the EIP – through using pattern-based tools.

• Find room for shellcode – start of exploit through sending as many characters as
the program will take.

• Test for bad characters – through the use of Immunity debugger.

• Testing for proof of concept – by using a common program as ‘shellcode’ e.g.,
calculator.

• Exploit with ‘malicious’ code – for example reverse shell.

• Egg hunter code – proving more than one way to exploit the program.

• Repeating with DEP enabled – attempting to exploit the program with DEP
enabled.

3 | P a g e

2 PROCEDURE

2.1 OVERVIEW OF PROCEDURE

The methodology, that was mentioned earlier, was followed in order to assess the

exploitability of the music player application. By attaching the music player to debugging

software such as Ollydbg and Immunity Debugger it is possible to monitor memory

registers, etc. Using these makes it easier to craft exploits and monitor the effects of the

uploaded code. The main target for these exploitations is the skin section, which

involved the tester creating .INI files.

2.2 PROCEDURE

2.2.1 DEP disabled

Through the use of Ollydbg and specifically made .INI files for the CoolPlayer application,

the tester was able to test the vulnerability. The tester used Ollydbg in order to watch

memory registers and the stack for the effects of the .INI file that was made.

The file that was to be uploaded for testing consisted of the required CoolPlayer skin

header and a large number of “A”’s that would be used to crash the application. The

first step was to find out how many “A”’s was required to crash the application. The

tester tested this with 3500 A’s (Figure 2), which led to the application crashing and

providing the error that showed the EIP being overwritten with the letter “A” (0x41 in

the figure which is hexadecimal for A) in figure 4.

Figure 1 CoolPlayer music player

4 | P a g e

Figure 2 Perl code for buffer overflow vulnerability

Figure 3 Uploading .INI file

5 | P a g e

Figure 4 EIP and stack being overwritten with A's

After getting the error that showed that there were enough of the letter A to
overflow the buffer, the tester then needed to find the distance to the instruction
pointer (EIP). This was done using a pattern creation tool (Figure 5) and a pattern
offset tool (Figure 8).
The pattern creation tool took in the number of A’s that the tester used in the
initial test and created a pattern equally as large. The tester then puts the pattern
in place of the 3500 A’s (Figure 6) and uploads it to the program in order to see
which part of the pattern gets written to the EIP (Figure 7).

6 | P a g e

Figure 5 Pattern Create tool - 3500 characters

Figure 6 Pattern created in Perl code to make new .INI file

7 | P a g e

Figure 7 EIP being written by the pattern

Figure 8 Pattern Offset tool - number of characters to EIP

The EIP is calculated in order for the tester to be able to take control of it and essentially

take control over the entire program. After calculation, the tester needed to test that

this was indeed the correct location, by having the 1056 (calculated number) A’s sent in

addition to 4 “B”’s “C”’s and “D”’s (Figure 9). If the location is correct and there is no

other filtering in effect or compensation required, the tester would see the letter B

(0x42) in place of the EIP and see each of the letter’s C (0x43) and D (0x44) four times at

the top of the stack (Figure 10).

8 | P a g e

Figure 9 Testing EIP location

Figure 10 Testing EIP location in stack

After this was confirmed, the tester then moved onto finding a JMP ESP call in the

Kernel32.dll (Figure 11) so that after filling the buffer it would jump to a JMP ESP. A JMP

ESP, when hit, makes the program jump to the top of the stack, in this case where the

shellcode is and would then be executed.

9 | P a g e

Figure 11 Finding JMP ESP in kernel32.dll

With a JMP ESP address found, it can be added to the Perl code in place of the 4 “B”
characters. However, due to the fact that the stack reads instructions backwards
(or little endian style) the tester had to pack the address so that when it is written
to the program it is readable to the program (Figure 12).

Figure 12 Packing the JMP ESP memory address

After the tester was able to confirm that the JMP ESP works the way that was
wanted, the next step was to find how much space was available in the stack, this
would allow for the tester to be able to check to see how much space was
available for shellcode.
In order to do this the tester would need to do a similar test as the one that was
used to check the size of the buffer. By sending a large number of a characters it
would be possible to see how much space there is available within the stack. The
tester went ahead with sending “\x90” or otherwise called NOPs, which are areas

10 | P a g e

of empty space with no instructions (Figure 13). This was noted through placing a
breakpoint on the JMP ESP memory location (Figure 14 and 15) where the results
can be seen in figure 16.

Figure 13 Sending NOPs to check room for Shellcode

Figure 14 Setting Breakpoint

11 | P a g e

Figure 15 Breakpoint (shortcut F2)

Figure 16 About 32000 NOP's

Next the tester looked at potential filtering of characters. Due to the buffer
overflow vulnerability being a popular exploited vulnerability it is possible that
when making the program the programmers added a filter that would filter out
certain characters. Also, the program itself may take act differently to certain
characters such as 0x00 which is often an end of line command, which would cut
off anything after it. The tester had to test for such characters that had the
possibility to negatively affect the execution of the shellcode. For this the tester
used another debugger called Immunity Debugger (Immunity Debugger, 2020) and
attached CoolPlayer to it (Figure 17) by clicking file and attach and selecting
CoolPlayer. Immunity Debugger was used because it supports a plugin called

12 | P a g e

mona.py (corelan/mona, 2020). Mona.py has the ability to compare contents of a
file to what is in memory. More specifically a generated collection of all 256 ASCII
(Figure 18) characters can be put into the CoolPlayer program and the log be
compared to what is in memory, in order to root out any filtered/bad characters. If
any of the characters are filtered it would be noticeable as something other than
the character would be displayed or nothing would be displayed at all if one were
to attempt to find filtered characters by visually checking.

Firstly, the tester created a folder for all the logs to go into to be looked at and
used later. To do this the command ‘!mona config -set workfolder c:/log/1801153’
was used creating a ‘log’ folder and a ‘1801153’ sub-folder on the C: drive. After
that the command ‘!mona bytearray’ was run in order to create all 256 ASCII
characters that would be put into the Perl program, to then be uploaded to
CoolPlayer (Figure 19).

Figure 17 Attaching CoolPlayer to Immunity Debugger

Figure 18 All 256 ASCII characters

13 | P a g e

Figure 19 256 ASCII characters in Perl code

After attaching CoolPlayer to Immunity Debugger and uploading the new skin file
the tester then used the command ‘!mona compare -f
c:/logs/1801153/bytearray.bin -a 0011E4F8’ (Figure 20 and Figure 21) to compare
the ASCII characters that are in the stack to the ones that are in memory and
locate any filtered characters.

Figure 20 Compare command at ASCII memory location

Figure 21 Memory location in stack

14 | P a g e

Figure 22 Comparing ASCII characters

After having the bad characters returned (Figure 22) from the program it is now
possible to use a tool called MSFvenom to craft shellcode that would avoid using
the listed bad characters (Figure 23). Then, using the shellcode that was produced
and placing it to the Perl code in order to be able to upload it into the music player
to try to get calculator to pop up, in which was successfully achieved (Figure 24).

15 | P a g e

Figure 23 Calculator shell code using MSFvenom

Figure 24 Calculator popping up after running skin with shellcode

2.2.1.1 Complex exploitation

After being able to prove the concept through the use of calculator shellcode, the tester

then moved onto something a little more complex. This was to use a reverse TCP shell

that would connect back to the tester’s kali machine (attacker machine). With the use of

MSFvenom again, the tester was able to craft a reverse TCP shellcode in Perl to put in

place of the calculator shellcode. First, the tester needed the IP address of the attacking

machine, which was retrieved through using the command ‘ifconfig’ (Figure 25).

16 | P a g e

Once, the IP address was retrieved it was possible for the tester to craft ‘malicious’ code

using MSFvenom and alpha_upper in order to avoid possible issues with filtered

characters (Figure 26).

Figure 25 IP address of the Kali attacking machine

Figure 26 Reverse tcp shellcode with attacker IP and selected Port

Next, the TCP handler was set up on the attacker’s machine using the Metasploit

framework (Figures 27 and 28). After uploading the skin file with the malicious code in it

the handler was able to successfully open a Meterpreter shell on the victim’s computer.

It can be seen to have succeeded in figure 29, in which a shell is opened on the victim’s

computer (Figure 30).

17 | P a g e

Figure 27 Setting up framework with payload

Figure 28 Setting up framework with attacker information and exploiting Victim

18 | P a g e

Figure 29 Successful exploitation

Figure 30 Meterpreter shell

2.2.1.2 Egg hunter Proof of Concept (PoC)

The music player had plenty of space for shellcode, but this is not always the case.
Sometimes the amount of space that can be written to can be limited and even
lack the space for even running calculator or notepad. However, there are
methods that can go around this, and one such method that the tester used was
egg hunting. The egg hunting method can also be thought of as “staged shellcode”
(Van Eeckhoutte, 2021), where a small amount of shellcode is executed in order to
search for the larger shellcode that is written somewhere else in memory. There
are 3 main techniques; 1) the SEH technique – which requires about 60 bytes of
space, 2) the IsBadReadPtr – which requires 37 bytes and 3) the NtDisplayString –
which uses 32 bytes. In this case the tester used the NtDisplayString technique.
When crafting egg hunter shellcode, a unique ‘tag’ is used, in this case the tester
used ‘w00t’ (Figure 31), then the tester started the shellcode with ‘w00tw00t’. A

19 | P a g e

second ‘w00t’ was added to differentiate the tag from the shellcode. In order to
avoid any unexpected behaviour from the CoolPlayer program the alpha_upper
encoder was used on the egg hunter code (Figure 32) (Van Eeckhoutte, 2021).

Figure 31 Egg hunter tag

Figure 32 MSFvenom using egg hunter tag

The egg hunter shellcode was then placed into the Perl code, where the
calculator/exploit was, and the new .INI skin file was loaded into CoolPlayer in
which successfully launched calculator (Figure 33), which proved the egg hunting
technique to be true.

20 | P a g e

Figure 33 Calculator popping up after running egg hunter shellcode

2.2.2 DEP enabled

All exploitation attempts from here on were done with Data Execution Prevention
enabled. As can be seen in figures 34, 35 and 36 the tester was able to enable DEP
by having right clicked “My Computer”, selected Properties, under the Advanced
tab selected the settings button under Performance. Then under the Data
Execution Prevention tab the tester turned DEP on.

Figure 34 Right click My Computer and select Properties

21 | P a g e

Figure 35 Advanced tab select settings under Performance

Figure 36 Under Data Execution Prevention, select Turn on

In order to exploit CoolPlayer with DEP on, Return Oriented Programming was
used in order to get to various locations in memory with the intentions to disable
DEP. In order to execute this, mona.py was used again with Immunity debugger to
find addresses in memory with the RETN instruction. The MSVCRT.DLL file was
used as the main point of searching for said addresses. Making sure that bad
character filtering was used, mona.py was run (Figure 37).

22 | P a g e

Figure 37 Mona.py for RTN addresses in MSVCRT.DLL

After running, a text file with ROP chain suggestions (rop_chain.txt) was printed
out to the log folder, which was created at the beginning, when creating the ASCII
characters for character filtering. The text file had many suggestions in plenty of
different programming languages, including C, ruby, python, and so on (Figure 38).
Complete screenshots can be found in Appendix B.

Figure 38 Top of rop_chain.txt file

The tester used the addresses found in the VirtualAlloc() part written in python that was

found close to the bottom of the .TXT file (Figure 39).

23 | P a g e

Figure 39 ROP chain in python for VirtualAlloc()

Through the use of “search and replace” in Notepad++ the tester was able to turn the

python into Perl (Appendix C). The final result can be seen in figures 40 and 41 followed

with calculator shellcode included in figure 41.

Figure 40 ROP chain in Perl

24 | P a g e

Figure 41 ROP chain in Perl part 2

However, when uploading the new .INI file to CoolPlayer the program would crash, and

DEP would not be disabled, as an error would pop up (Figure 42). Through a little bit of

testing the tester found that some of the address that were being used in the ROP chain,

Ollydbg was not able to locate (Figure 43).

Figure 42 Error after ROP .INI loaded in CoolPlayer

25 | P a g e

Figure 43 Issue faced when running ROP chains

Given that the tester was not able to successfully execute shellcode through the use of

ROP chains, the tester decided to move on, as there is more than one way to circumvent

DEP. Another method is through the use of system functions. This is when the tester is

able to point to an area in memory where code can be executed and execute code there.

For this the tester looked at executing the command prompt (cmd). To start the tester

needed to find the memory location for the windows execution (WinExec) process, this

was done through the use of a tool called arwin.exe (Figure 44) parsing through

kernel32.dll.

Figure 44 Memory address for WinExec in kernel32.dll

Following this the tester also looked for the exit process (Exit Process) in kernel32.dll

using arwin.exe, as was necessary for following the system functions method (Figure 45).

Figure 45 Exit Process memory address in kernel32.dll

After getting the memory addresses of these two, it was possible for the tester to be

able to craft Perl code that will allow for the tester to be able to locate the address for

the execution of cmd commands.

Firstly, the Perl code was built like the previous ones, where the tester had to fill the

buffer and check for any compensation by looking at the stack. In addition, adding a

variable that will contain the shellcode that the tester was using and subtracting it from

26 | P a g e

the A’s that are being used to fill the buffer. It is simpler to subtract the shellcode from

the padding (large number of A’s) as this will allow for the tester to change the shellcode

without having to constantly change the padding (Figure 46).

Figure 46 System Instructions – Perl code

Then by placing a breakpoint at the windows execute address, the tester was able to

confirm the stack aspect (Appendix D). The tester was then able to look for the memory

location for cmd. To do this the tester right clicked the stack box, selected ‘search for

binary string’ (Figure 47), in the ASCII box search for ‘cmd /c’ and found the location for

the cmd command at location ‘0x001300BD’ (Figures 48 and 49 respectively).

Figure 47 searching for cmd

27 | P a g e

Figure 48 searching for cmd part 2

Figure 49 Location of cmd found at 0x001300BD

However, the tester knew that if this memory location were used, the code would not

execute as there is a null byte in the middle of the memory address. In order to avoid

this the tester attempted to move the cmd command that was in the shellcode further

down the stack, firstly by moving the shellcode to inside the padding instead of before it

(Figure 50).

28 | P a g e

Figure 50 Shellcode moved to be placed inside padding

This led to the new memory address of ‘0x00130103’ (Figure 51) which was added to

the Perl code in figure 52.

Figure 51 New memory address of 0x00130103

29 | P a g e

Figure 52 Cmd address added

The last memory address added was a “Windows Style” at the end of the eip variable,

however this variable is of little significance which led to the tester’s lack of concern for

the null byte at the end of the cmd command (as when run it is ‘backwards’ or little

endian), which will only have an effect on the “Windows Style” and not on anything else,

as there is nothing else after it.

Finally, after uploading the new .INI file to the CoolPlayer music player, it was possible to

crash the program without the DEP warning appearing.

30 | P a g e

3 RESULTS

3.1 RESULTS

3.1.1 DEP disabled

Through the use of various tools and debuggers it was possible for the tester to be able

to exploit the music player CoolPlayer. Without DEP enabled it is a very simple to exploit

the buffer overflow vulnerability and to get malicious code running, that even users with

very little knowledge or understanding would be able to successfully execute such

exploits.

3.1.1.1 Egg hunter

Furthermore, the tester used a second method to show that even with a smaller

buffer/stack size it is still possible for a malicious user to be able to exploit the

vulnerability. Through using this method, it demonstrates that simply reducing the area

of that code can be written to is still not enough of a countermeasure in terms of

protecting against a buffer overflow attack.

3.1.2 DEP enabled

3.1.2.1 ROP chains

Using similar methods and tools as previous the tester, again, attempted to exploit the

music player CoolPlayer. Though the initial test using ROP chains was unsuccessful, due

to address in the chains not being found while using Ollydbg, but also a few issues

regarding the character filtering in mona.py as bad characters were inputted into the

debugger, however some were still present in the ROP chains.

3.1.2.2 System Instructions

Though the first test was unsuccessful, the tester went ahead and followed another

method; system instructions method. This was more successful in that the program

successfully crashed without a DEP warning popping up. Though this method required

the tester to move the shellcode around the stack in order to avoid null bytes in the

middle of the memory address.

31 | P a g e

4 DISCUSSION

4.1 GENERAL DISCUSSION

The aim of this report was to conduct a series of tests in order to exploit and assess the

risk of the buffer overflow vulnerability found within the music player CoolPlayer. This

test went to show that if left unattended there could be disastrous consequences, as

any user with malicious intent can exploit this vulnerability, with DEP off. One such

example of a high risk exploitation would be for a user to be able to upload a reverse

shell skin file to a victims CoolPlayer (most likely through social engineering) and

connect it back to their attacking machine. This could lead to all types of information

being able to be accessed by the attacker.

However, even with DEP on malicious users are still capable of attacking and exploit the

application through means of ROP chains and system instructions. There also may be

other methods that malicious users can follow that the tester has not looked at in this

report such as stack pivoting where a user can create a ‘fake stack’ where an attacker

can store the ROP chains and overwrite the real stack to point to the fake stack – this

would be mainly for applications where it may be difficult to find memory corruption (Li,

2021).

The tests and report will allow for programmers to be able to be aware of the issues of

buffer overflow and take precautions when creating an application.

4.2 COUNTERMEASURES

In this section countermeasure will be discussed. Some key countermeasures to protect

from buffer overflow attacks would be firstly to consider what language a programmer

should make a program in. For example, assembly and C/C++ are popular languages to

program in, however are vulnerable to such buffer overflow attacks as they allow direct

access to memory. While C++ does have libraries that have many options to protect

against buffer overflows, these protections and checks will not be effective if they are

not called.

A countermeasure that is already in place is the executable-space protect, otherwise

called Data Execution Prevention (DEP) that Windows has implemented. What this does

is identify certain areas of memory and tags it as non-executable in order to prevent

malicious code from executing and causing an exception to occur. However, there are

methods that a malicious user can follow in order to misconfigure DEP or even disable it

completely. One such method would be through the use of return-orientated

32 | P a g e

programming (ROP), which was demonstrated earlier. This is used in order to call

Windows API functions, such as VirtualAlloc(), to disable DEP and allow shellcode

execution. While the other is to call system instructions and run code that way, which

was demonstrated in the second section of the DEP enabled part of the report.

Another countermeasure for buffer overflow is the use of deep packet inspection (DPI),

which can detect at a network layer very basic attempts to exploit buffer overflows by

use of attack signatures. This can be used to block attacks that have the signatures of

known attacks. Though this method is not a highly effective method as it will have little

effect on attacks that are not stored known.

Finally, there is address space layout randomization (ASLR). ASLR is a security feature

that arranges data areas such as heap, stack and libraries in random places in a

processes address space. Randomization of the virtual memory in which these data

areas can be found can make buffer overflow exploitations more difficult but can be

overcome through tailored exploits.

4.3 CONCLUSIONS

In conclusion, it was found that the buffer overflow vulnerability in CoolPlayer can have

a large impact on the users should it be exploited. Following the aim of this report tests

and explanations were documented, allowing for programmers and application makers

to be aware of the dangers of such a common vulnerability.

If applications such as CoolPlayer are used without concern for this vulnerability, there is

a high chance that these applications will be exploited and cause a significant amount of

damage to the users – to their computer as well as any information stored on it.

Therefore, it is highly recommended that programmers and the like take care and take

into consideration common vulnerabilities such as buffer overflow.

4.4 FUTURE WORK

Through testing, the tester had a difficult time working with DEP enabled. Through the

use of mona.py a ROP chain was to be used to get around DEP, however there were

difficulties using the character filtering as mona.py still produced ROP chains that used

these characters causing the execution of them to fail. Furthermore, there was the issue

of some parts of the ROP chains to not be addresses that Olly debug could find in its

memory as seen in figure 42. Given more time, the tester could have found a method

that would allow for the ROP chains to be able to be executed. Furthermore, the tester

could have attempted to additionally test the other sections of the application, and not

just looking at the skins.

33 | P a g e

REFERENCES

URLs:

En.wikipedia.org. 2021. Buffer overflow - Wikipedia. [online] Available from:

https://en.wikipedia.org/wiki/Buffer_overflow#Protective_countermeasures [Accessed 9 April

2021].

Chaudhary, A., 2019. SLAE 0x3: Egg Hunter Shellcode. [online] Medium. Available from:

https://medium.com/@chaudharyaditya/slae-0x3-egg-hunter-shellcode-6fe367be2776

[Accessed 9 April 2021].

Cvedetails.com. 2007. Coolplayer Coolplayer : List of security vulnerabilities. [online] Available

from: https://www.cvedetails.com/vulnerability-list/vendor_id-7597/product_id-

12829/Coolplayer-Coolplayer.html [Accessed 25 April 2021].

GitHub. 2020. corelan/mona. [online] Available from: https://github.com/corelan/mona

[Accessed 12 April 2021].

Cvedetails.com. 2008. CVE-2008-5735 : Stack-based buffer overflow in skin.c in CoolPlayer 2.17

through 2.19 allows remote attackers to execute arbitrary code. [online] Available from:

https://www.cvedetails.com/cve/CVE-2008-5735/ [Accessed 9 April 2021].

En.wikipedia.org. 2021. Exploit (computer security) - Wikipedia. [online] Available fro,:

https://en.wikipedia.org/wiki/Exploit_(computer_security)#:~:text=An%20exploit%20(from%

20the%20English,computer%20software%2C%20hardware%2C%20or%20something

[Accessed 23 April 2021].

Immunityinc.com. 2020. Immunity Debugger. [online] Available from:

https://www.immunityinc.com/products/debugger/ [Accessed 2 May 2021].

Li, V., 2019. Binary Exploitation: Data Execution Prevention. [online] Medium. Available from:

https://medium.com/swlh/binary-exploitation-data-execution-prevention-cc47edf2033b

[Accessed 9 April 2021].

Van Eeckhoutte, P., 2010. Exploit writing tutorial part 8 : Win32 Egg Hunting | Corelan

Cybersecurity Research. [online] Corelan Team. Available from:

https://www.corelan.be/index.php/2010/01/09/exploit-writing-tutorial-part-8-win32-egg-

hunting/ [Accessed 9 May 2021].

CloudFlare. 2021. What is buffer overflow?. [online] Available from:

https://www.cloudflare.com/en-gb/learning/security/threats/buffer-overflow [Accessed 23

April 2021].

https://en.wikipedia.org/wiki/Buffer_overflow#Protective_countermeasures
https://medium.com/@chaudharyaditya/slae-0x3-egg-hunter-shellcode-6fe367be2776
https://www.cvedetails.com/vulnerability-list/vendor_id-7597/product_id-12829/Coolplayer-Coolplayer.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7597/product_id-12829/Coolplayer-Coolplayer.html
https://github.com/corelan/mona
https://www.cvedetails.com/cve/CVE-2008-5735/
https://en.wikipedia.org/wiki/Exploit_(computer_security)#:~:text=An%20exploit%20(from%20the%20English,computer%20software%2C%20hardware%2C%20or%20something
https://en.wikipedia.org/wiki/Exploit_(computer_security)#:~:text=An%20exploit%20(from%20the%20English,computer%20software%2C%20hardware%2C%20or%20something
https://www.immunityinc.com/products/debugger/
https://medium.com/swlh/binary-exploitation-data-execution-prevention-cc47edf2033b
https://www.corelan.be/index.php/2010/01/09/exploit-writing-tutorial-part-8-win32-egg-hunting/
https://www.corelan.be/index.php/2010/01/09/exploit-writing-tutorial-part-8-win32-egg-hunting/
https://www.cloudflare.com/en-gb/learning/security/threats/buffer-overflow

34 | P a g e

APPENDICES

APPENDIX A – ROP_CHAIN.TXT

Below are the screenshots for the entire rop_chain.txt file.

35 | P a g e

36 | P a g e

37 | P a g e

38 | P a g e

39 | P a g e

40 | P a g e

41 | P a g e

42 | P a g e

43 | P a g e

44 | P a g e

45 | P a g e

46 | P a g e

47 | P a g e

48 | P a g e

APPENDIX B – INSTALLING MONA.PY

Download mona.py from corelan / mona on Github, then place into pycommands folder

within the Immunity debugger files (Figures 53, 54, 55, 56 and 57).

Figure 53 Finding Immunity Debugger Folder

49 | P a g e

Figure 54 Find pycommands in Immunity Debugger Part 1

Figure 55 Find pycommands in Immunity Debugger Part 2

Figure 56 Pycommands folder

50 | P a g e

Figure 57 Paste mona.py into pycommands

51 | P a g e

APPENDIX C – PYTHON TO PERL SEARCH AND REPLACE

To turn the Python code into Perl code, the tester used “Search and Replace”. Begin by

pasting the Python code into a text editor (Figure 58) and saving it as a .PL file, then start

the replace process by opening the search and replace box (Figure 59) by going to the

search tab and selecting replace.

Next, highlight and copy the beginning of the line up to the 0x and replacing it with the

Perl variable and bracket (Figure 50), the fastest way would be to click the ‘replace all’

button. After that, highlight and copy the end of the line from the comma to the hash

(Figure 61) and replace it with the Perl closing bracket, semi-colon and a hash (for

comments) as seen in figure 62. Finally the Python code has been turned into Perl code

(Figure 63).

Figure 58 Beginning appearance

52 | P a g e

Figure 59 Under search select Replace

Figure 60 Replace empty space with Perl Code

53 | P a g e

Figure 61 Result of Perl variable being placed

Figure 62 Replace Python ending with Perl ending

54 | P a g e

Figure 63 End result - complete Perl code

55 | P a g e

APPENDIX D – BREAKPOINT FOR DEP SYSTEM INSTRUCTION

In order to set a breakpoint; press CTRL + g, enter in memory address and press F2 to

create the breakpoint (Figures 64, 65 and 66).

Figure 64 CTRL + G and memory address for breakpoint

Figure 65 F2 breakpoint on address

56 | P a g e

Figure 66 Stack after hitting breakpoint

